Fundación Gecp lung cancer research

#15CongressGECP

HER2 role in lung cancer

Dr. Virginia Calvo, MD, PhD Hospital Universitario Puerta de Hierro, Majadahonda, Madrid

DISCLOSURE

Employment: H. Universitario Puerta de Hierro Majadahonda, Madrid

Consultant or Advisory Role: Roche, AstraZeneca, MSD, BMS, Takeda, Sanofi, AMGEN

Stock Ownership: none

Research Funding: Roche

Speaking: Roche, AstraZeneca, MSD, BMS, Takeda, Pfizer, Janssen

Grant support: none

Other: none

OUTLINE

- HER2 BIOLOGY
- HER2 ALTERATIONS IN NSCLC
- CLINICAL AND BIOLOGIC CHARACTERISTICS *HER2*-MUTANT NSCLC
- TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN *HER2*-MUTANT NSCLC
- MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- HER2 THERAPY
 - CHEMOTHERAPY
 - IMMUNOTHERAPY
 - HER2 TARGETED TYROSINE KINASE INHIBITORS (TKIs)
 - HER2 TARGETED MONOCLONAL ANTIBODIES (mAb)
 - HER2 TARGETED ANTIBODY-DRUG CONJUGATES (ADCs)
- MECHANISM OF RESISTANCE
- FUTURE PERSPECTIVES
- CONCLUSION

OUTLINE

- HER2 BIOLOGY
- HER2 ALTERATIONS IN NSCLC
- CLINICAL AND BIOLOGIC CHARACTERISTICS HER2-MUTANT NSCLC
- TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- HER2 THERAPY
 - CHEMOTHERAPY
 - IMMUNOTHERAPY
 - HER2 TARGETED TYROSINE KINASE INHIBITORS (TKIs)
 - HER2 TARGETED MONOCLONAL ANTIBODIES (mAb)
 - HER2 TARGETED ANTIBODY-DRUG CONJUGATES (ADCs)
- MECHANISM OF RESISTANCE
- FUTURE PERSPECTIVES
- CONCLUSION

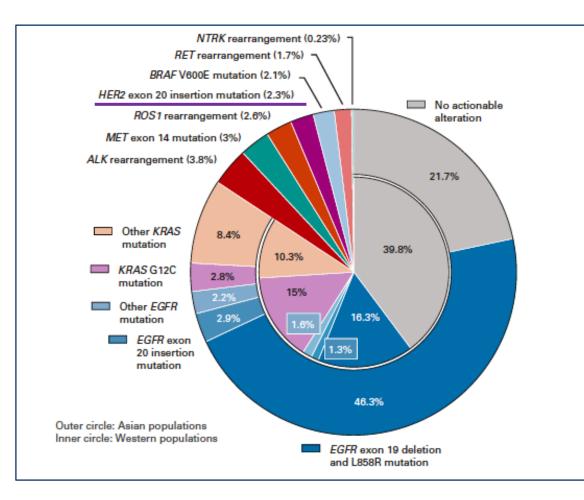
HER2 BIOLOGY

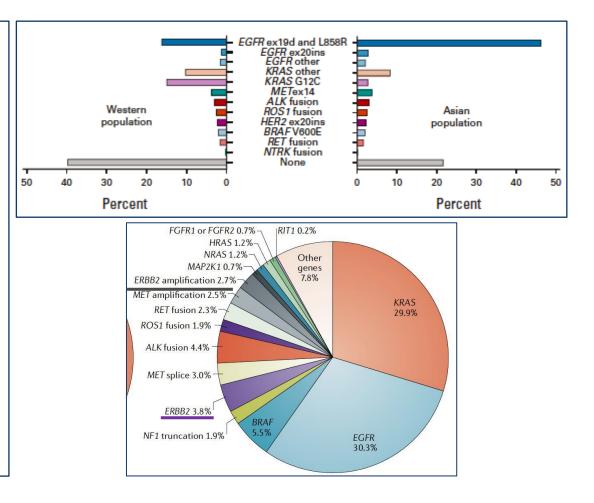
- Discovery in the mid 1980's
- *HER2* proto-oncogene is located on the long arm of human chromosome 17 (17q11.2-q12)
- The HER2 transcript encodes a transmembrane glycoprotein belonging to the ErbB-family of type 1 transmembrane growth factor receptors: HER1 (ErbB1, EGFR), HER2 (ErbB2, HER2/neu), HER3 (ErbB3) and HER4 (ErbB4)
- Each receptor is composed of three main components: an extracellular ligand binding domain, an
 helical transmembrane segment and an intracellular tyrosine kinase domain

HER2 BIOLOGY

- HER2 is a common oncogenic driver in multiple tumor types, including breast, gastroesophageal and colorectal cancers
- HER2 has no known ligand-binding capacity and can be activated in a ligand-independent manner through homodimerization or heterodimerization with other HER proteins
- Deregulation of HER2 signalling can be caused by HER2 amplification, overexpression or mutations, including exon 20 insertions
- These different alterations do not confer equal sensitivity to HER2-targeted therapies

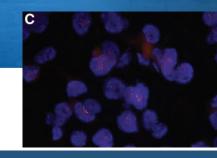
Li Z, et al EBioMedicine. 2020;62:103074; Bang Y-J, et al. Lancet. 2010;376:687-97; Swain SM, et al. N Engl J Med. 2015;372:724-34





OUTLINE

- HER2 BIOLOGY
- HER2 ALTERATIONS IN NSCLC
- CLINICAL AND BIOLOGIC CHARACTERISTICS HER2-MUTANT NSCLC
- TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- HER2 THERAPY
 - CHEMOTHERAPY
 - IMMUNOTHERAPY
 - HER2 TARGETED TYROSINE KINASE INHIBITORS (TKIs)
 - HER2 TARGETED MONOCLONAL ANTIBODIES (mAb)
 - HER2 TARGETED ANTIBODY-DRUG CONJUGATES (ADCs)
- MECHANISM OF RESISTANCE
- FUTURE PERSPECTIVES
- CONCLUSION



Tan AC, Tan DSW. J Clin Oncol 2022;40(6):611-25

HER2 Mutations


HER2 Gene Amplification

HER2 Protein Overexpression

- Driver mutation in 2% to 4%
- The majority are exon 20 insertions that occur within the kinase domain
- Detectable by NGS

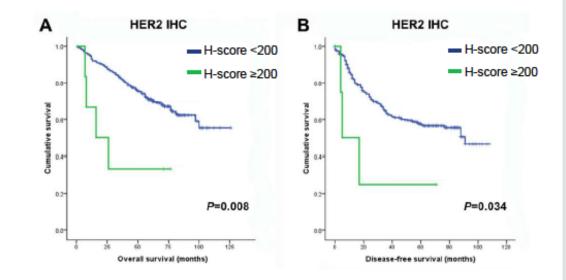
- 3% to 13%
- Described as mutually exclusive from *HER2* mutations
- Known resistance mechanism in EGFR+ disease, but not necessarily driver mutation
- Detectable by **FISH** and **NGS**

- 2.4% to 38%
- IHC 3+ in 3-6% of cases
- Not considered actionable
- Easily identifiable by IHC

HER2 mutations are generally mutually exclusive of other actionable oncogenic drivers (such as EGFR, KRAS, and ALK alterations) and are associated with a poor prognosis

Mazieres J, et al. J Clin Oncol. 2013; Pillai RN, et al. Cancer. 2017;123(21):4099-4105; Takeda M, et al. Oncotarget. 2018; Zhou J, et al. Ther Avd Med Oncol. 2020

IHC: score 2+

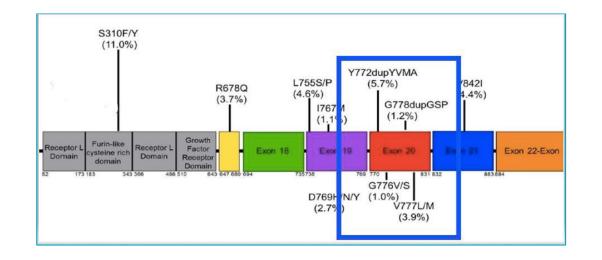


MARKER OF POOR PROGNOSIS

- *HER2* mutant NSCLC patient have worse prognosis
- The prognostic significance of *HER2* amplification is unclear
- HER2 overexpressing NSCLC is associated with lower survival rates

High HER2 Overexpression Was Associated With Significantly Shorter OS and DFS Than Lower HER2 Expression (N=321)⁴

OS (A) and DFS (B) Kaplan-Meier curves according to the HER2 IHC H-score. Patients with overexpression of HER2 showed significantly shorter OS and DFS rates compared to patients without HER2 overexpression according to the H-scoring method.


Liu L, et al. J Thorac Oncol. 2010;5(12):1922-32; Zhao J, Xia Y. JCO Precision Oncology. 2020;4:411-25; Pillai RN, et al. Cancer. 2017;123(21):4099-4105; Kim EK, et al. PLoS One. 2017;12(2):e0171280

HER2 EXON 20 INSERTIONS

- *HER2* exon 20 insertions occur in 1.5% of NSCLC patients
- Account for 90% of all *HER2* mutations
- *HER2* mutations encompass heterogeneous alterations clustered in the extracellular, transmembrane and kinase domains
- Kinase domains alterations predominate in NSCLC, the most common of which is: Y772_A775dupYVMA variants (p.Y772dupYVMA or p.A775_G776insYVMA); 34-83% of *HER2* mutations in NSCLC

Arcilla ME, et al. Clin Cancer Res. 2012;18:4910-8; Robichaux J, et al. Cancer Cell. 2019;36:444-57; Zhao S, et al. J Thorac Oncol. 2020;15:962-72

OUTLINE

- HER2 BIOLOGY
- HER2 ALTERATIONS IN NSCLC
- CLINICAL AND BIOLOGIC CHARACTERISTICS HER2-MUTANT NSCLC
- TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- HER2 THERAPY
 - CHEMOTHERAPY
 - IMMUNOTHERAPY
 - HER2 TARGETED TYROSINE KINASE INHIBITORS (TKIs)
 - HER2 TARGETED MONOCLONAL ANTIBODIES (mAb)
 - HER2 TARGETED ANTIBODY-DRUG CONJUGATES (ADCs)
- MECHANISM OF RESISTANCE
- FUTURE PERSPECTIVES
- CONCLUSION

CLINICAL AND BIOLOGIC CHARACTERISTICS HER2-MUTANT NSCLC

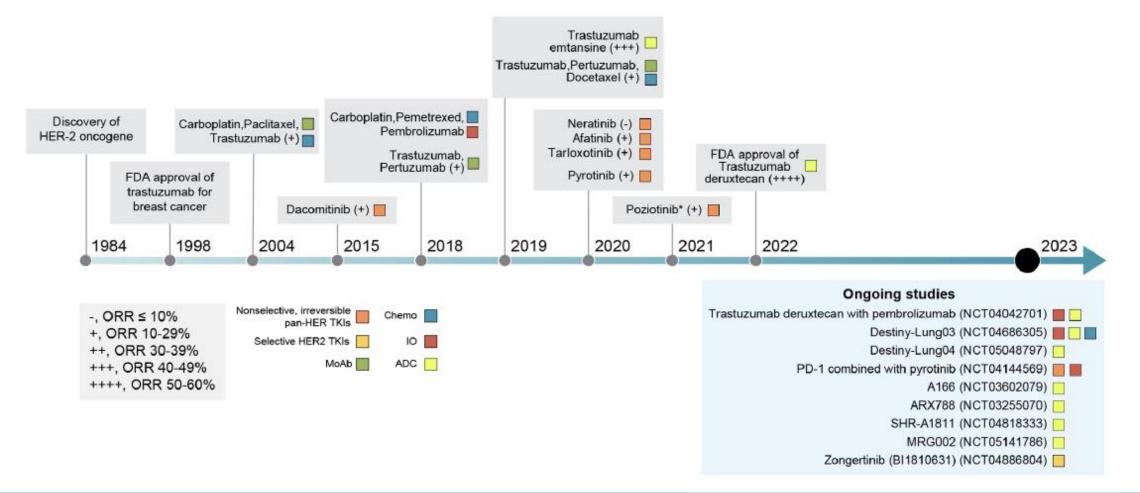
Table 1. Clinical and Biologic Characteristics of Patients With HER2-Mutated Disease (n = 65) No. of Patients % Characteristic Clinical phenotype presentation: Age at diagnosis, years 65 100 Mean 61.1 SD 11.6 Median 60.4 Sex Women Women 45 69 Men 20 31 Younger patients Tobacco Never 34 52.3 Non-smokers Former 11 16.9 Current 12 18.5 Adenocarcinoma 8 Unknown 12.3 Tumor stage 11 16.9 Poor prognosis Ш 3 4.6 Ш 15 23.1 Increased incidence of brain metastasis IV 33 50.8 3 Unknown 4.6 Metastasis sites for stage IV 33 8 24.2 Lung Brain 3 9.1 Bone 2 6.1 Multiples organs 13 39.4

Abbreviation: SD, standard deviation.

Other or unknown

7

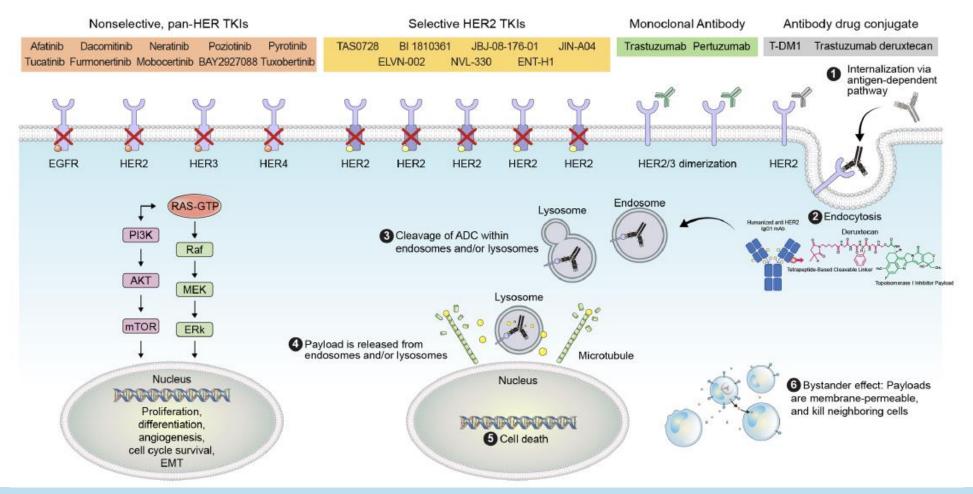
21.3


OUTLINE

- HER2 BIOLOGY
- HER2 ALTERATIONS IN NSCLC
- CLINICAL AND BIOLOGIC CHARACTERISTICS HER2-MUTANT NSCLC
- TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- HER2 THERAPY
 - CHEMOTHERAPY
 - IMMUNOTHERAPY
 - HER2 TARGETED TYROSINE KINASE INHIBITORS (TKIs)
 - HER2 TARGETED MONOCLONAL ANTIBODIES (mAb)
 - HER2 TARGETED ANTIBODY-DRUG CONJUGATES (ADCs)
- MECHANISM OF RESISTANCE
- FUTURE PERSPECTIVES
- CONCLUSION

\$

TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC



OUTLINE

- HER2 BIOLOGY
- HER2 ALTERATIONS IN NSCLC
- CLINICAL AND BIOLOGIC CHARACTERISTICS HER2-MUTANT NSCLC
- TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- HER2 THERAPY
 - CHEMOTHERAPY
 - IMMUNOTHERAPY
 - HER2 TARGETED TYROSINE KINASE INHIBITORS (TKIs)
 - HER2 TARGETED MONOCLONAL ANTIBODIES (mAb)
 - HER2 TARGETED ANTIBODY-DRUG CONJUGATES (ADCs)
- MECHANISM OF RESISTANCE
- FUTURE PERSPECTIVES
- CONCLUSION

MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC

OUTLINE

- HER2 BIOLOGY
- HER2 ALTERATIONS IN NSCLC
- CLINICAL AND BIOLOGIC CHARACTERISTICS HER2-MUTANT NSCLC
- TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- HER2 THERAPY
 - CHEMOTHERAPY
 - IMMUNOTHERAPY
 - HER2 TARGETED TYROSINE KINASE INHIBITORS (TKIs)
 - HER2 TARGETED MONOCLONAL ANTIBODIES (mAb)
 - HER2 TARGETED ANTIBODY-DRUG CONJUGATES (ADCs)
- MECHANISM OF RESISTANCE
- FUTURE PERSPECTIVES
- CONCLUSION

CHEMOTHERAPY

- First-line: Pemetrexed based chemotherapy:
 - ORR: 36%
 - PFS: 5.1 months
 - Among the HER2 mutation variants, there was a trend towards inferior PFS in A775_G776insYVMA group compared with other variants (4.2 vs 7.2 months, p=0.085)
- Several phase II studies have reported the efficacy of chemotherapy in combination with HER2 targeting agents

Study	Phase	Patient population	Ν	Agents	ORR (%)	PFS	G3 + TRAE
ECOG 2598 ¹	Ш	Untreated HER2 1-3+	56	Carboplatin, paclitaxel, trastuzumab	24.5%	3.25 months	35.8% G4
MSKCC ²	П	Untreated HER2 0-3+	64	Trastuzumab + docetaxel/paclitaxel	28%	2.4 months /3.9 months	G3 diarrhea (10% docetaxel)
Gatzemeier U, et al. ³	II	Untreated HER2 1-3+	101	Cisplatin, gemcitabine +/- trastuzumab	36% (vs 41% in control arm)	6.3 months (vs 7.2 months)	Not reported

1. Langer CJ, et al. J Clin Oncol. 2004;22(7):1180-7; 2. Krug LM, et al. Cancer. 2005;104(19):2149-55; 3. Gatzemeier U, et al. Ann Oncol. 2004;15(1):19-27

IMMUNOTHERAPY

- ICI monotherapy:
 - ORR: 0% to 27.3%
 - PFS: 1.88 to 2.5 months
- The current evidence does not support the use of ICIs as a single agent in the treatment of HER2-alterated NSCLC
- Immuno-chemotherapy combinations, with limited supporting evidence, remain a viable first-line treatment option

Study	Phase	Patient population	Ν	Agents	ORR (%)	PFS
IMMUNOTARGET ¹	Retrospective	HER2mt (ex20ins)	29	ICI monotherapy	7.4%	2.5 months
Guisier F, et al. ²	Retrospective	HER2mt (ex20ins)	23	ICI monotherapy	27.3%	2.2 months
Saalfeld FC, et al. ³	Retrospective	HER2mt (ex 8, 19, 20)	22	Immuno-chemotherapy combination	52%	6 months
Yang G, et al. ⁴	Retrospective	HER2 alterated (mutant or amplification)	46	Immuno-chemotherapy combination	28.9%	5.2months

1.Mazieres J, et al. Ann Oncol. 2019;30(8):1321-8; 2.Guisier F, et al. J Thorac Oncol. 2020;15(4):628-36; 3.Saalfeld FC, et al. J Thorac Oncol. 2021;16(11):1952-8; 4.Yang G, et al. Ther Adv Med Oncol 2022;14

IMMUNOTHERAPY

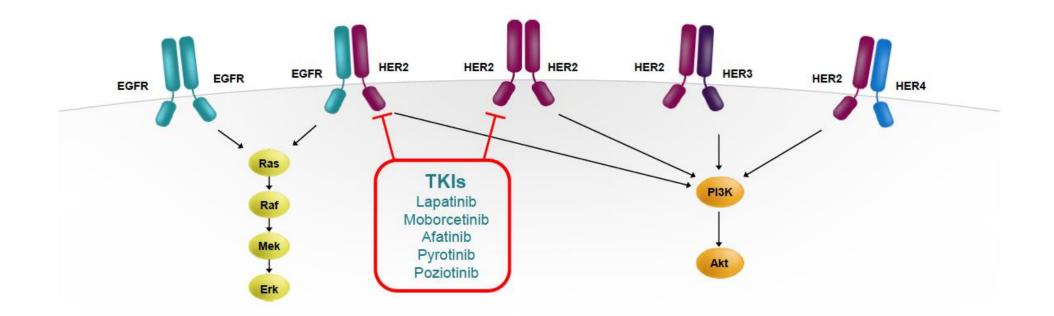
- ICI monotherapy: ٠
 - ORR: 0% to 27.3% •
 - PFS: 1.88 to 2.5 months
- The current evidence does not support the use of ICIs as a single agent in the treatment of HER2-alterated NSCLC ۲
- Immuno-chemotherapy combinations, with limited supporting evidence, remain a viable first-line treatment option ٠

	Study	Phase	Patient popul	ation	Ν	Agents	ORR (%)	PFS		
	IMMUNOTARGET ¹	Retrospective	HER2mt (ex20	Dins)	29	ICI monotherapy	7.4%	2.5 months		
NSCLC Driver Oncogene	es 12.2%	2.1		ins)	23	ICI monotherapy	27.3%	2.2 months		
HER2	7.4	96 2.5								
ALK	<u> </u>	0.0%		19, 20)	22	Immuno-chemotherapy combination	52%	6 months		
RET	6.	3%		d (mutant or amplification)	46	Immuno-chemotherapy combination	28.9%	5.2months		
ROS1	16.7%	N/A			40	initiatio enemoticitapy combination	20.370	5.211011113		
MET	15.6%		4.7							
BRAF	24.396	1.8								
KRAS	26.0%		5.5							
Other Trials	50.0% 40.0% 30.0% 20.0% 10. Percentage ★	0% 0.0% 0.0 1.0 2.0	3.0 4.0 5.0 6.0 Ionths							
	ICI Monotherapy ORR	1	PFS	1.Mazieres J, et al. Ann Oncol. 2019;30(8):1321-8; 2.Guisier F, et al. J Thorac Oncol. 2020;15(4):628-36;						
NO NO 1			8	2 Carelfold EC at al I Thoras Oneol 2021,1C(11),10E2 Q. AVana C at al Thor Adv Mad Oneol 2022,1A						

bars reflect overall ORR (blue) and mPFS (green) demonstrated in retrospective IMMUNOTARGET study **vertical orange lines depict ORRs shown in other individual ICI monotherapy trials

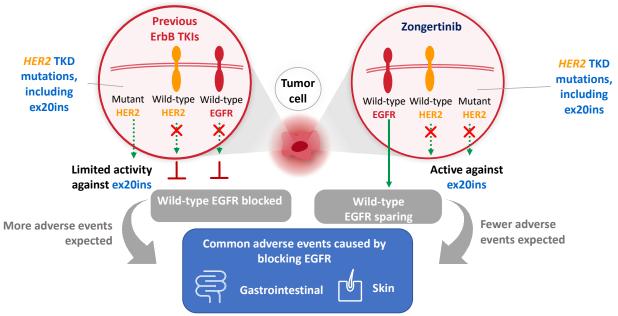
3.Saalfeld FC, et al. J Thorac Oncol. 2021;16(11):1952-8; 4.Yang G, et al. Ther Adv Med Oncol 2022;14

IMMUNOTHERAPY


- ICI monotherapy:
 - ORR: 0% to 27.3%
 - PFS: 1.88 to 2.5 months
- The current evidence does not support the use of ICIs as a single agent in the treatment of HER2-alterated NSCLC
- Immuno-chemotherapy combinations, with limited supporting evidence, remain a viable first-line treatment option

Study	Phase	Patient population	Ν	Agents	ORR (%)	PFS
IMMUNOTARGET ¹	Retrospective	HER2mt (ex20ins)	29	ICI monotherapy	7.4%	2.5 months
Guisier F, et al. ²	Retrospective	HER2mt (ex20ins)	23	ICI monotherapy	27.3%	2.2 months
Saalfeld FC, et al. ³	Retrospective	HER2mt (ex 8, 19, 20)	22	Immuno-chemotherapy combination	52%	6 months
Yang G, et al. ⁴	Retrospective	HER2 alterated (mutant or amplification)	46	Immuno-chemotherapy combination	28.9%	5.2months

1.Mazieres J, et al. Ann Oncol. 2019;30(8):1321-8; 2.Guisier F, et al. J Thorac Oncol. 2020;15(4):628-36; 3.Saalfeld FC, et al. J Thorac Oncol. 2021;16(11):1952-8; 4.Yang G, et al. Ther Adv Med Oncol 2022;14

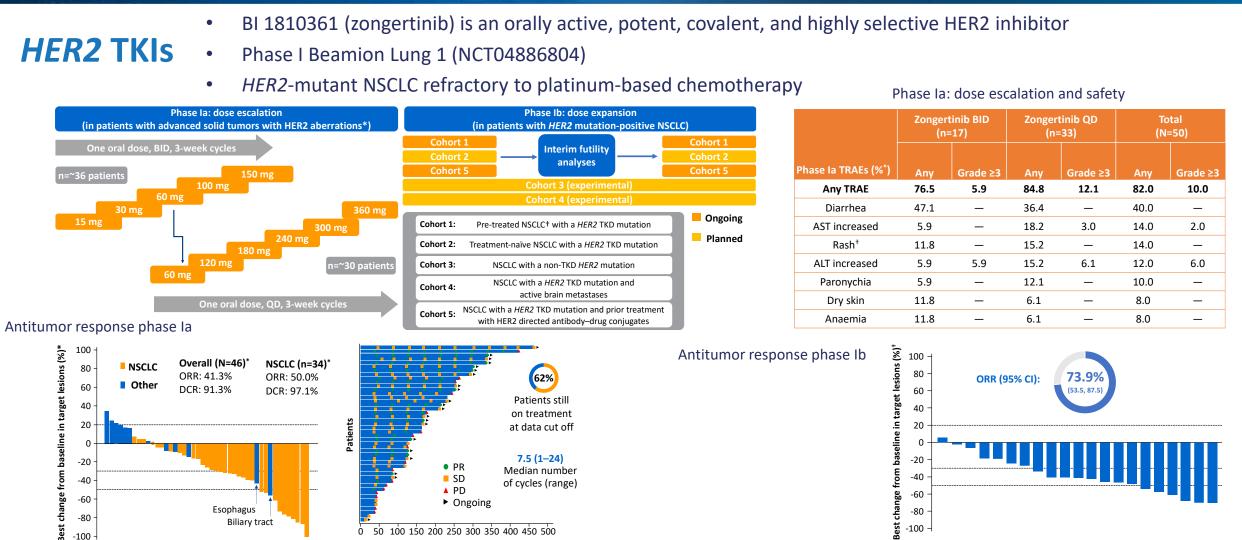


- TKIs with activity against HER2 have shown limited efficacy in targeting *HER2* exon 20 insertions
- Non-selective HER2 inhibitors:
 - Include the pan-HER TKIs:
 - Afatinib, dacomitinib, neratinib, poziotinib, pyrotinib, tucatinib, furmonertinib, mobocertinib, BAY2927088, tarloxotinib and tuxobertinib
- Selective HER2 inhibitors:
 - Include novel HER2 TKIs that are highly selective with EGFR sparing activity:
 - TAS0728, **BI 1810631**, JBJ-08-176-01, JIN-A04, ELVN-002, NVL-330 and ENT-H1

- TKIs with activity against HER2 have shown limited efficacy in targeting HER2 exon 20 insertions
- Non-selective HER2 inhibitors:
 - Include the pan-HER TKIs:
 - Afatinib, dacomitinib, neratinib, poziotinib, pyrotinib, tucatinib, furmonertinib, mobocertinib, BAY2927088, tarloxotinib and tuxobertinib
- Selective HER2 inhibitors:
 - Include novel HER2 TKIs that are highly select
 - TAS0728, **BI 1810631**, JBJ-08-176-01, JIN-A(

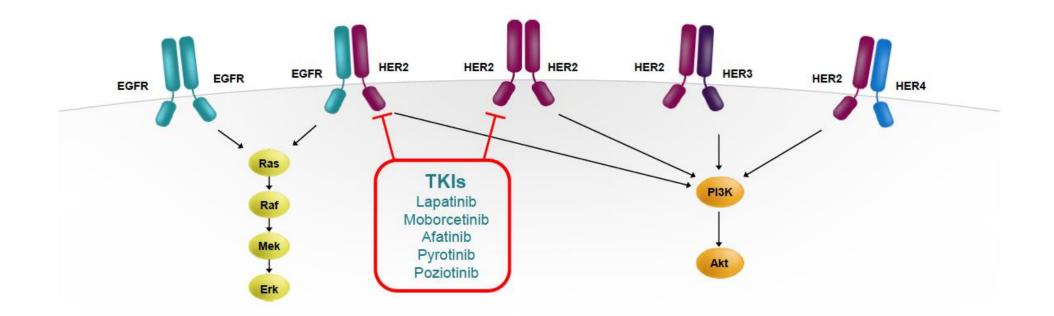
Study	Phase	Patient population	N	Agents	ORR (%)	PFS	Toxicities
Dziadziuszko R, et al. ¹	Prospective, phase II NICHE trial (ETOP)	HER2mt (ex20ins)	13	Afatinib	53.8%	15.9 weeks	Diarrhea, vomiting, rash, paronychia, fatigue, mucositis G3 + TRAE <10%
Lai WV, et al. ²	Retrospective international	HER2mt (ex20ins)	27	Afatinib	13% (3/23)	3 months	Diarrhea/GI toxicity, skin rash
Kris MG, et al. ³	Phase II	HER2mt (ex20ins) and amplification	30 (26/4)	Dacomitinib	12% (3/26) 0% (0/4)	3 months	Diarrhea (90%; grade 3/4: 20%/3%), dermatitis (73%; grade 3/4: 3%/0%), and fatigue (57%; grade 3/4: 3%/0%)
Negrao MV, et al. ⁴	Phase II, SUMMIT	HER2/3mt	26	Neratinib	4% (1/26)	5.5 months	Diarrhea (74%; grade 3: 22%), nausea (43%), vomiting (41%)

1.Dziadziuszko R, et al. J Thorac Oncol. 2019;14(6):1086-1094; 2.Lai WV, et al. Eur J Cancer. 2019;109:28-35; 3.Kris MG, et al. Ann Oncol. 2015;26(7):1421-1427; 4. Negrao MV, et al. J Immunother Cancer. 2021;9(8):e002891



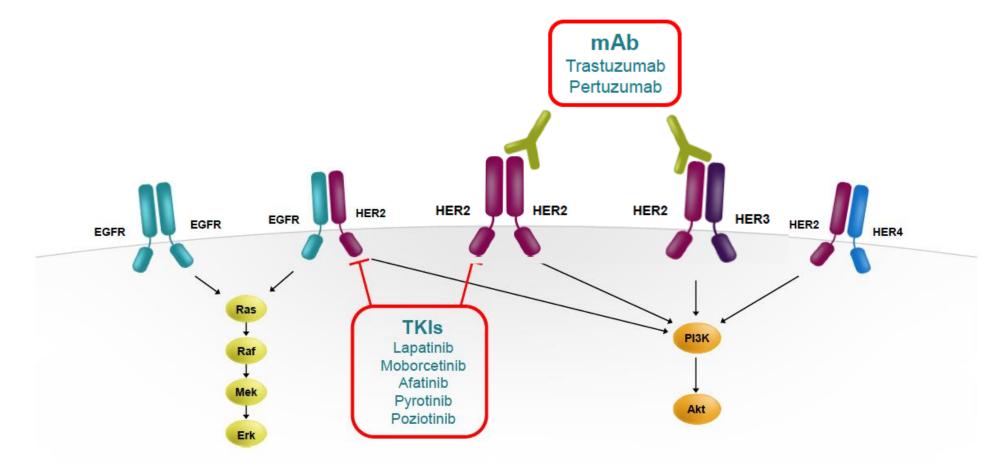
Study	Phase	Patient population	N	Agents	ORR (%)	PFS	Toxicities
Le X, et al. ¹	Phase II, ZENITH-20 (cohort 2)	Previously treated HER2mt (ex20ins)	90	Poziotinib	27.8%	5.5 months	G3 rash (49%), G3 diarrhea (25.6%), G3 stomatitis (24.4%)
Cornelissen R, et al. ²	Phase II, ZENITH-20 (cohort 4)	Treatment naïve HER2mt (ex20ins)	80	Poziotinib	39%	5.6 months	Rash (43%; 45% in the 16mg QD, 39% in the 8mg BID), stomatitis (19%; QD:21%, BID:15%), diarrhea(18%; QD:15%, BID:21%)
Zhou C, et al ³	Phase II	Previously treated HER2mt	60	Pyrotinib	30%	6.9 months	Diarrhea (92%; G3 20%), creatinine increase (30%)
Song Z, et al ⁴	Phase II	Treatment naïve HER2mt	78	Pyrotinib	19.2%	5.6 months	G3 diarrhea 16.7%

1.Le X, et al. J Clin Oncol. 2022;40(7):710-8; 2.Cornelissen R, et al. J Thorac Oncol 2023; 3. Zhou C, et al. J Clin Oncol 2020;38(24):2753-61; 4.Song Z, et al. BMC Med. 2022;20(1):42



Time since treatment start (days)

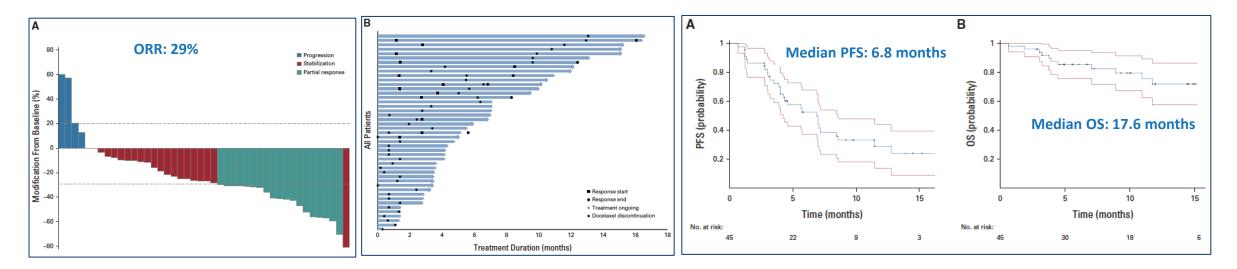
Opdam F, et al. J Clin Oncol 2023;41(16_suppl):8545. ASCO 2023; Yamamoto N, et al. IASLC 2023



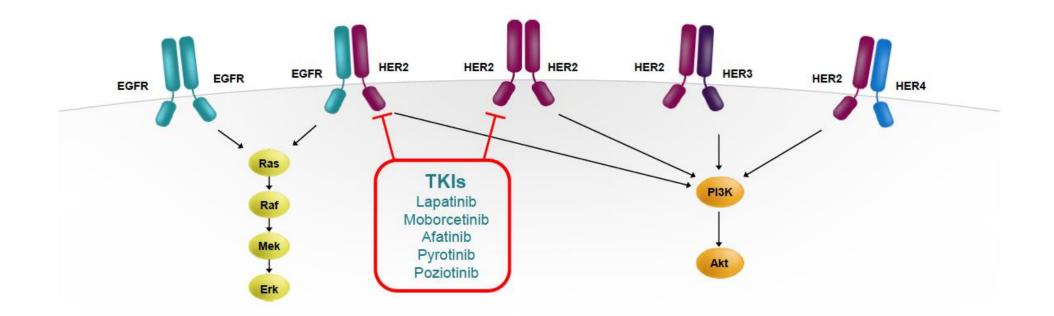
Anti-HER2 monoclonal antibodies (mAb)

- Early efforts to target NSCLC with *HER2* amplification have been unsuccessful with modest responses
- TRASTUZUMAB (a humanized monoclonal antibody directly targeting *HER2*)
 - Monotherapy: HOT1303 trial
 - ORR: 0%
 - Median PFS: 5.2 months
 - Combinations: phase II studies, HER2-overexpressed NSCLC, chemotherapy combination (gemcitabine and cisplatin; paclitaxel and carboplatin; docetaxel
 - ORR: 24.5-38%
 - Median PFS: 3.3-8.5 months

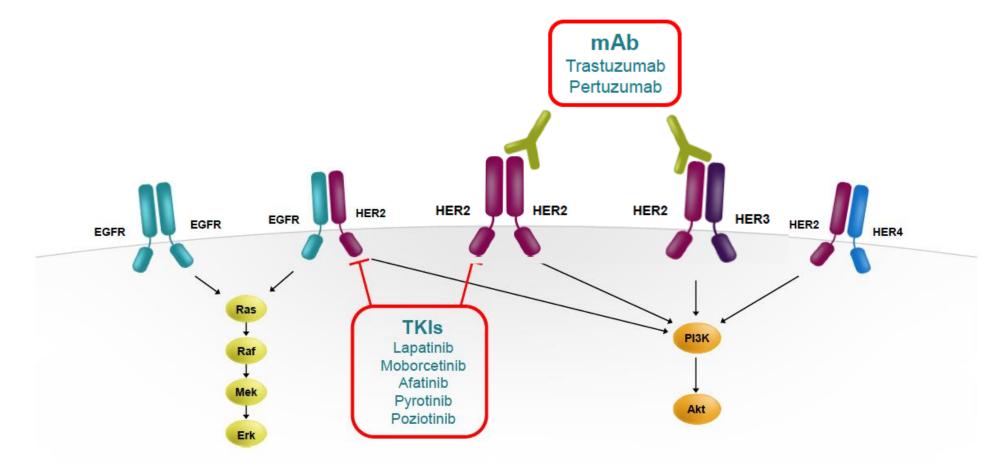
	Study	Phase	Patient population	Ν	Agents	ORR (%)	PFS	G3 + TRAE
	ECOG 2598 ¹	Ш	Untreated HER2 1-3+	56	Carboplatin, paclitaxel, trastuzumab	24.5%	3.25 months	35.8% G4
าร	MSKCC ²	Ш	Untreated HER2 0-3+	64	Trastuzumab + docetaxel/paclitaxel	28%	2.4 months /3.9 months	G3 diarrhea (10% docetaxel)
	Gatzemeier U, et al. ³	Ш	Untreated HER2 1-3+	101	Cisplatin, gemcitabine +/- trastuzumab	36% (vs 41% in control arm)	6.3 months (vs 7.2 months)	Not reported

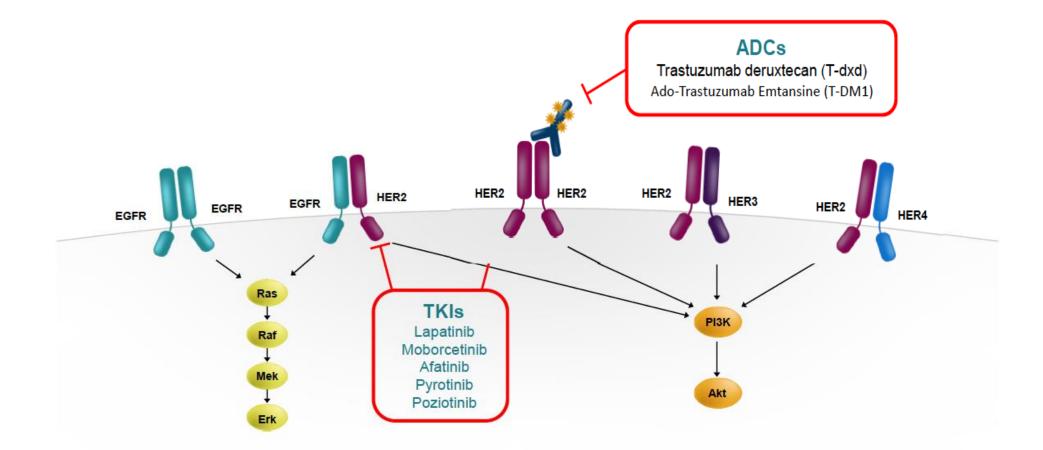

Lara PN, et al. Clin Lung Cancer 2004;5(4):231-236; Kinosita I, et al. Ann Oncol. 2018;29:viii540; Zinner RG, et al. Lung Cancer 2004;44(1):99-110; Gatzemeier U, et al. Ann Oncol. 2004;15(1):19-27; Langer Cj, et al. J Clin Oncol. 2004;22(7):1180-1187

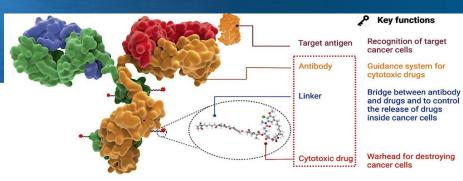
Anti-HER2 monoclonal antibodies (mAb)

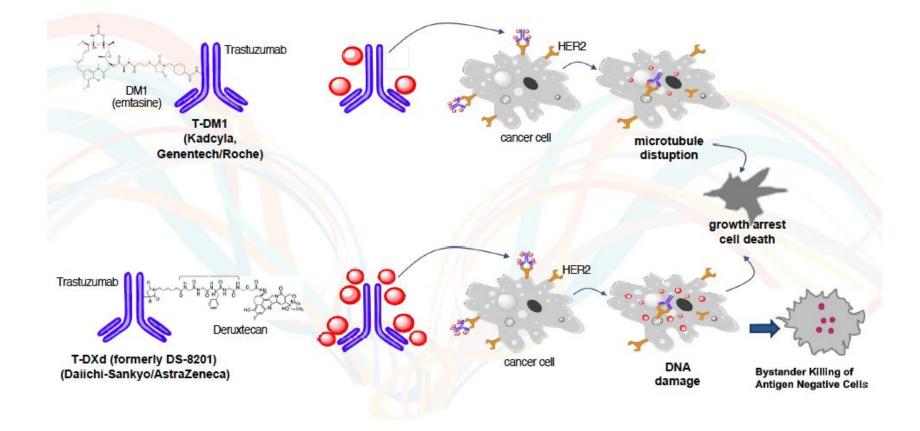

- PERTUZUMAB (a *HER2* humanized mAb) combined with TRASTUZUMAB in *HER2* mutation and amplification
 - ORR: 11% (heavily pretreated patients)
 - Median PFS: 5.2 months
- IFCT-1703 (PERTUZUMAB-TRASTUZUMAB-DOCETAXEL): phase II study of patients with HER2-mutated, advanced NSCLC after ≥ one platinum-based treatment

Ganti AK, et al. JCO Precis Oncol. 2023;7:e2300041; Kuyama S, et al. J Thorac Oncol. 2008;3(5):477-482; Mazieres J, et al. J Clin Oncol. 2022;40(7):719-28



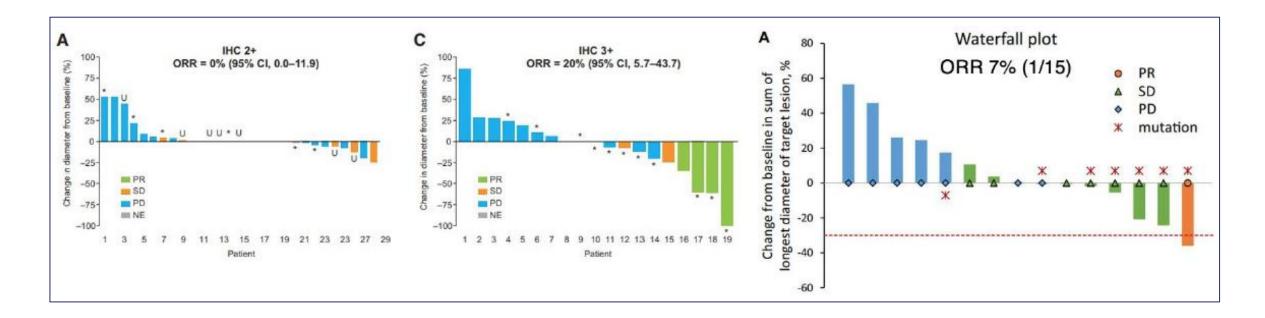






HER2 antibody drug conjugates (ADCs)

• ADCs: composed of a monoclonal antibody, payload and chemical linker designed to selectively target cancer cells

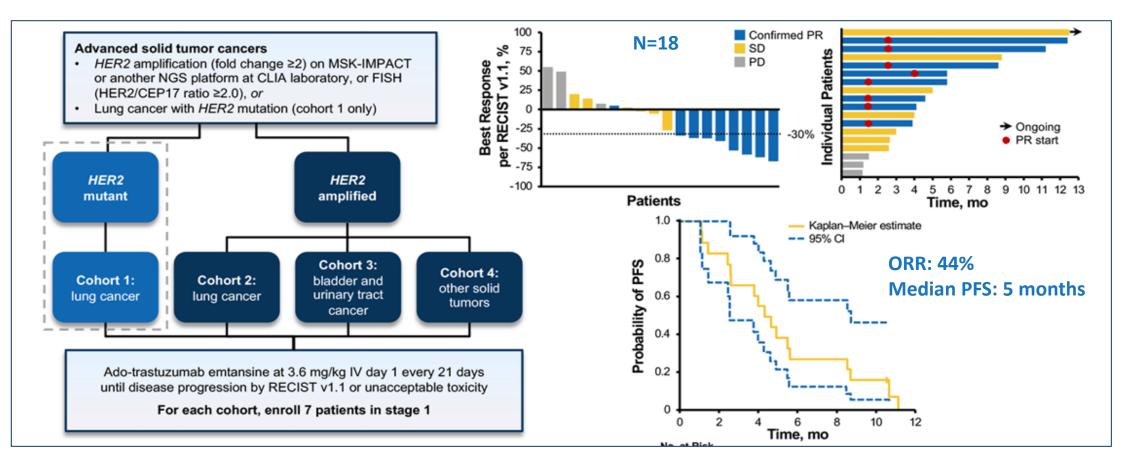


Fc

Trastuzumab emtansine (Kadcyla) Mertansine or DM⁴ (maytansinoid) MCC linker non-cleavable linker

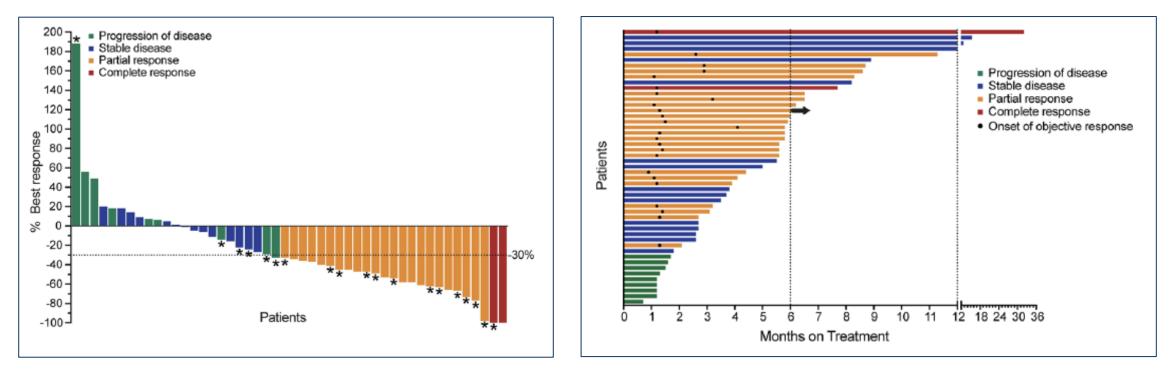
HER2 antibody drug conjugates (ADCs): T-DM1

- T-DM1 (ado-trastuzumab emtasine) is a HER2-targeted ADCs linking trastuzumab with emtasine, an ٠ antimicrotubule agent with a drug-to-antibody-ratio (DAR) of 3 to 4
- Negative trials targeting HER2 protein overexpression in NSCLC •


Hotta K, et al. J Thorac Oncol. 2018;13(2):273-279; Peters S, et al. Clin Cancer Res. 2019;25(1):64-72

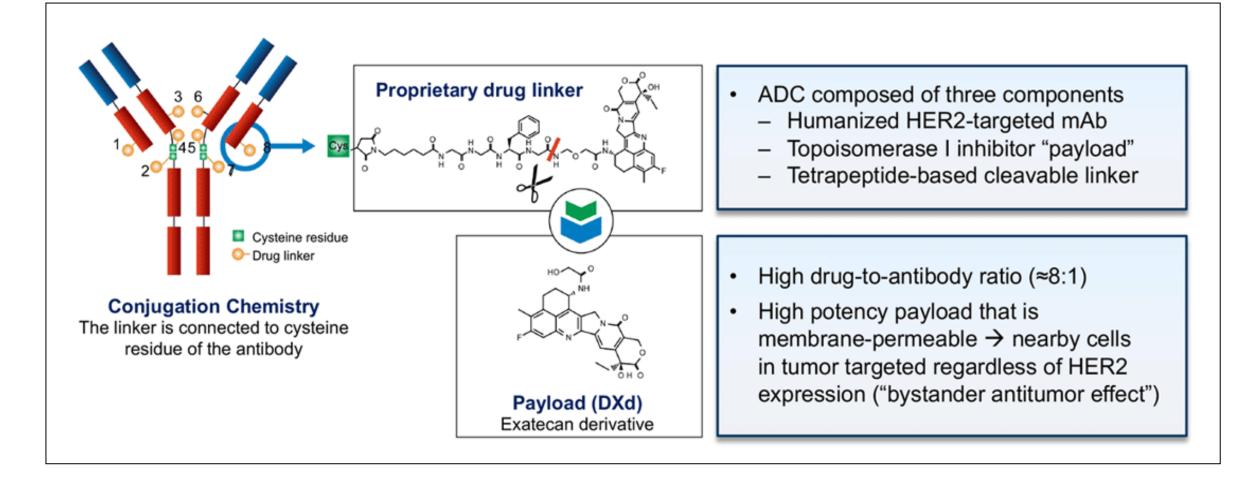
HER2 antibody drug conjugates (ADCs): T-DM1

• Positive trial targeting HER2 mutant or amplified. Phase II basket trial in heavily pre-treated patients

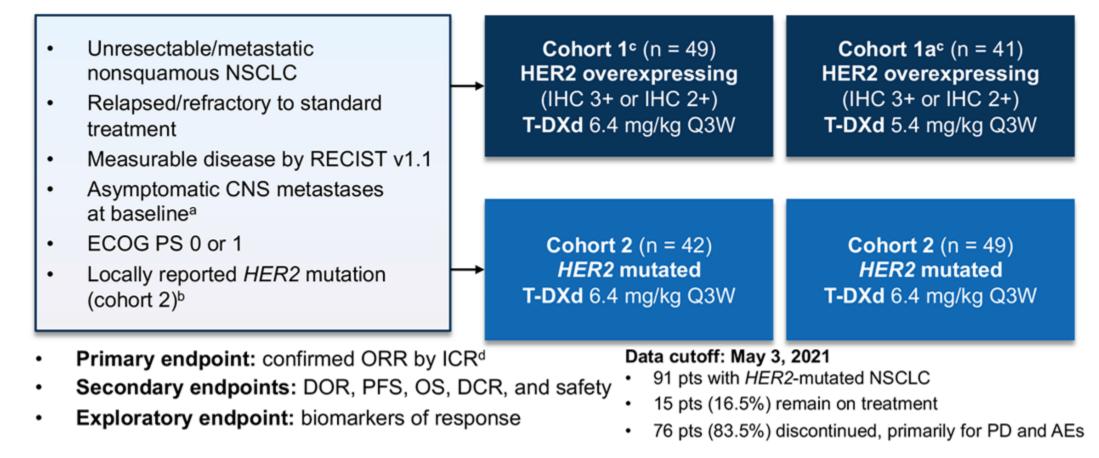


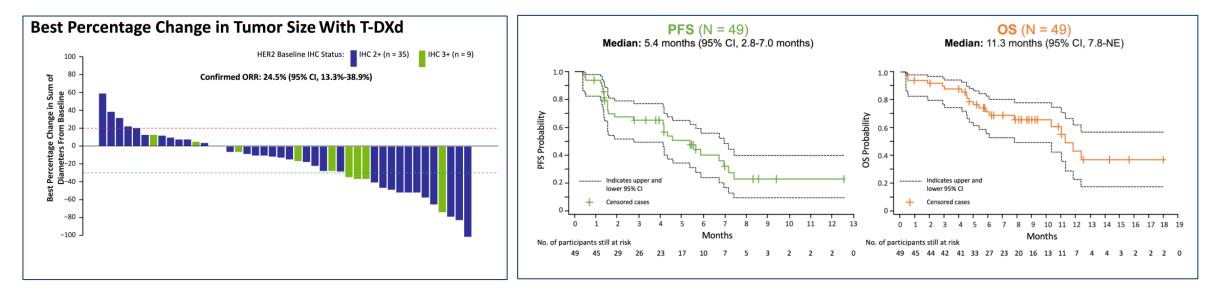
HER2 antibody drug conjugates (ADCs): T-DM1

• Phase II basket trial (NCT02675829)


ORR: 51% (24/49) Median DoR: 4 months Median PFS: 5 months

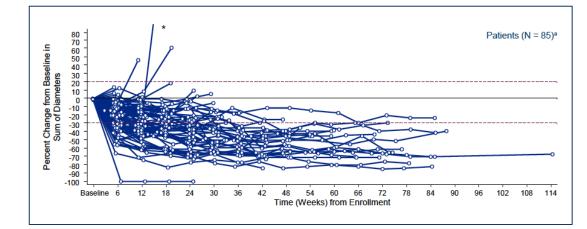
Li BT, et al. Cancer Discov. 2020;10(5):674-687

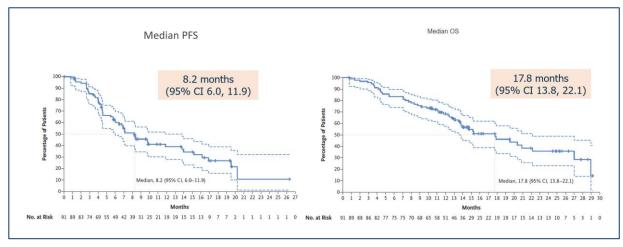


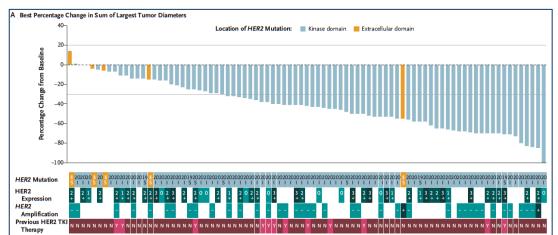

• DESTINY-Lung01: phase II study of T-DXd in patients with HER2-overexpressing or HER2-mutated metastatic NSCLC

- DESTINY-Lung01: cohort HER2-overexpressing (heavily pre-treated patients)
 - ORR: 24.5% and 20.0%, with no apparent difference by HER2 expression (IHC 2+ vs 3+)
 - DCR: 69.4%
 - Median PFS: 5.4 months
 - Median OS: 11.3 months
 - ILD: 16.3%

Nakagawa K, et al. J Thorac Oncol 2021;16(3):S109-S110. IASLC 2020

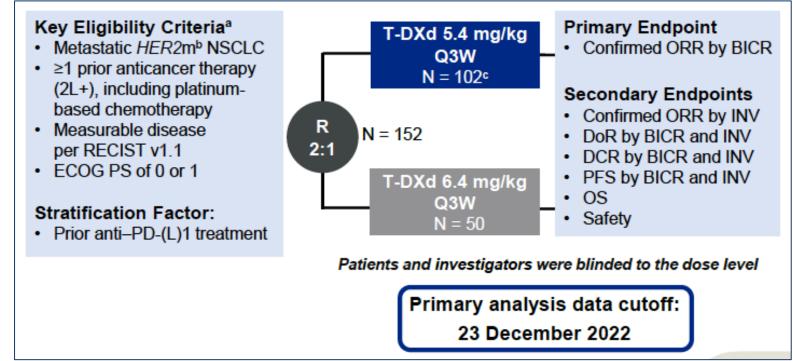



DESTINY-Lung01



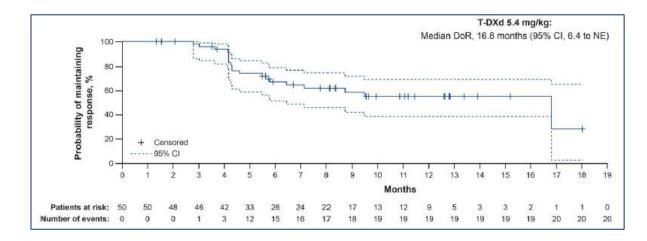
HER2 antibody drug conjugates (ADCs): TRASTUZUMAB DERUXTECAN (T-DXd)

- DESTINY-Lung01: cohort HER2-mutated
 - ORR: 55% (50/91). DoR: 9.3 months
 - DCR: 92%
 - Median PFS: 8.2 months
 - Median OS: 17.8 months
 - ILD: 26.4% (any grade)



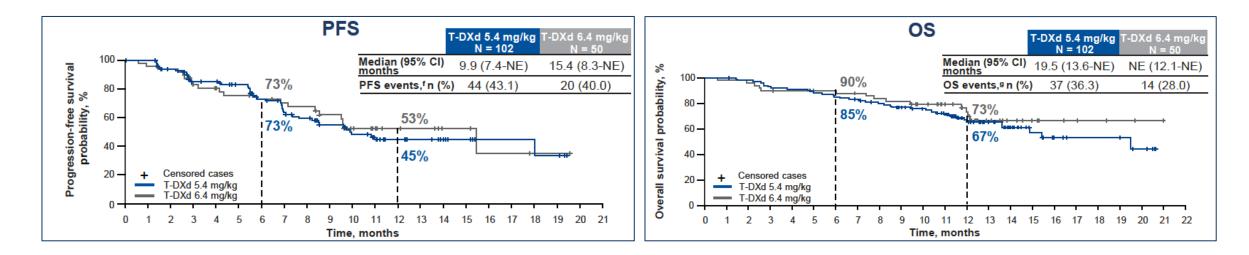
 DESTINY-Lung02: a non-comparative, randomized, blinded phase II trial of T-DXd 5.4 or 6.4 mg/kg every 3 weeks in patients with HER2-mutated metastatic NSCLC

In the interim analysis, T-DXd showed deep and durable responses and an acceptable and generally manageable safety profile \rightarrow accelerated approval of T-DXd 5.4mg/kg in the United States (FDA approval)



Goto K, et al. Ann Oncol 2022;33:S1422 (abstr LBA55). ESMO 2022; Goto K, et al. J Clin Oncol 2023 Sep 11:JCO2301361; Jänne PA, et al. IASLC 2023

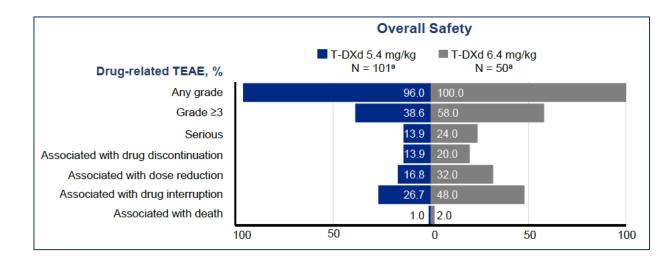
- DESTINY-Lung02
 - ORR: 49% vs 56% (regardless of number or type of prior systemic anticancer therapy and baseline metastasis
 - DCR: 93.1% vs 92%
 - DoR: 16.8 months vs NE



Response Assessment by BICR	T-DXd 5.4 mg/kg Once Every 3 Weeks (n = 102)	T-DXd 6.4 mg/kg Once Every 3 Weeks (n = 50)
Confirmed ORR, No. (%)	50 (49.0)	28 (56.0)
95% CI	39.0 to 59.1	41.3 to 70.0
Best confirmed overall response, No. (%)		
CR	1 (1.0)	2 (4.0)
PR	49 (48.0)	26 (52.0)
SD	45 (44.1)	18 (36.0)
PD	4 (3.9)	2 (4.0)
Nonevaluableª	3 (2.9)	2 (4.0)
DCR, No. (%)	95 (93.1)	46 (92.0)
95% Cl	86.4 to 97.2	80.8 to 97.8
DoR, months, median (95% Cl)	16.8 (6.4 to NE)	NE (8.3 to NE)
TTIR, months, median (range)	1.8 (1.2-7.0)	1.6 (1.2-11.2)
Follow-up, months, median (range)	11.5 (1.1-20.6)	11.8 (0.6-21.0)

Goto K, et al. J Clin Oncol 2023 Sep 11:JCO2301361; Jänne PA, et al. IASLC 2023

Median duration of follow-up was 11.5 months in the T-DXd 5.4mg/kg and 11.8 months in the T-DXd 6.4mg/kg


• Median PFS by BICR: 9.9 months vs 15.4 months

• Median OS: 19.5 months vs NE

- Median treatment duration: 7.7 months with T-DXd 5.4 mg/Kg and 8.3 months with T-DXd 6.4 mg/kg
- Most common any-grade TEAEs:
 - Nausea (67.3% and 82.0%)
 - Neutropenia (42.6% and 56%)
 - Fatigue (44.6% and 50.0%)
 - Decreased appetite (39.6% and 50.0%)

Adjudicated Drug-Related ILD			
Adjudicated as drug- related ILD	T-DXd 5.4 mg/kg N = 101ª	T-DXd 6.4 mg/kg N = 50ª	
Any grade, n (%)	13 (12.9)	14 (28.0)	
Grade 1	4 (4.0)	4 (8.0)	
Grade 2	7 (6.9)	9 (18.0)	
Grade 3	1 (1.0)	0	
Grade 4	0	0	
Grade 5	1 (1.0)	1 (2.0)	

 14.9% and 28.2% of patients who received prior anti-PD-(L)1 treatment had adjudicated drug-related ILD, whereas in patients who did not receive prior anti-PD-(L)1 treatment, rates were 7.4% and 27.3%

Goto K, et al. J Clin Oncol 2023 Sep 11:JCO2301361; Jänne PA, et al. IASLC 2023

OUTLINE

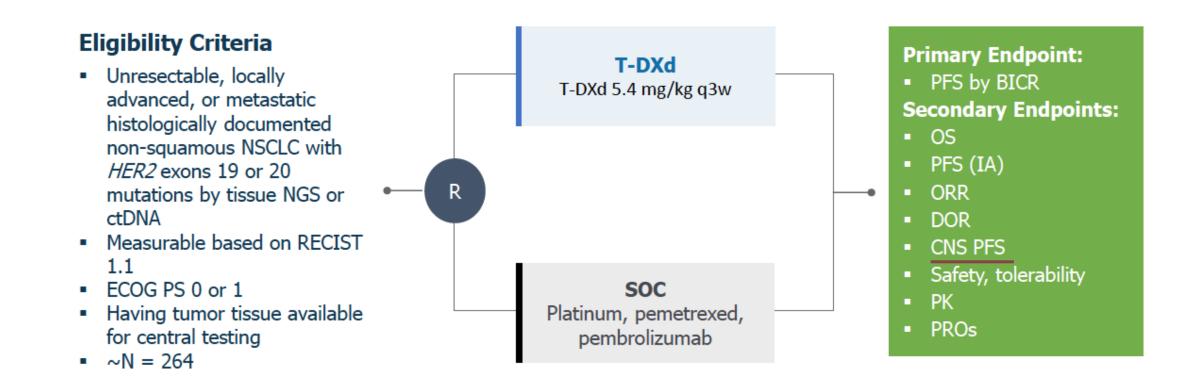
- HER2 BIOLOGY
- HER2 ALTERATIONS IN NSCLC
- CLINICAL AND BIOLOGIC CHARACTERISTICS HER2-MUTANT NSCLC
- TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- HER2 THERAPY
 - CHEMOTHERAPY
 - IMMUNOTHERAPY
 - HER2 TARGETED TYROSINE KINASE INHIBITORS (TKIs)
 - HER2 TARGETED MONOCLONAL ANTIBODIES (mAb)
 - HER2 TARGETED ANTIBODY-DRUG CONJUGATES (ADCs)
- MECHANISM OF RESISTANCE
- FUTURE PERSPECTIVES
- CONCLUSION

MECHANISM OF RESISTANCE

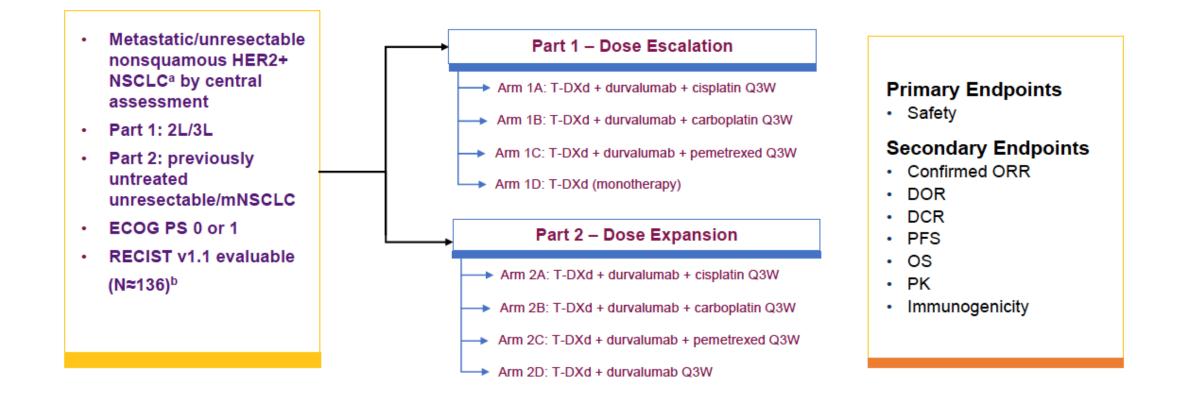
- Acquired resistance to HER2-targeted therapy is inevitable
 - HER2-dependent: *HER2* secondary mutations
 - HER2-independent: bypass activation such as RAS/MAPK signaling pathway or PI3K/AKT
- Data insufficient
- Further investigations are needed

OUTLINE

- HER2 BIOLOGY
- HER2 ALTERATIONS IN NSCLC
- CLINICAL AND BIOLOGIC CHARACTERISTICS HER2-MUTANT NSCLC
- TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- HER2 THERAPY
 - CHEMOTHERAPY
 - IMMUNOTHERAPY
 - HER2 TARGETED TYROSINE KINASE INHIBITORS (TKIs)
 - HER2 TARGETED MONOCLONAL ANTIBODIES (mAb)
 - HER2 TARGETED ANTIBODY-DRUG CONJUGATES (ADCs)
- MECHANISM OF RESISTANCE
- FUTURE PERSPECTIVES
- CONCLUSION



- The optimal sequencing strategy and exploration of the best combination treatment
- Currently, only NSCLC patients with HER2 mutations are indicated for the use of HER directed targets because overexpression and amplifications of HER2 do not have the same benefits
- The intracranial efficacy for the HER2 ADCs is not fully established


DESTINY-Lung04 is a randomized phase 3 study investigating the safety and efficacy of T-DXd vs SOC for 1L treatment of unresectable, locally advanced/metastatic NSCLC with *HER2* mutations

• DESTINY-Lung03: phase lb, open-label, dose-escalation

- Others:
 - HUDSON study phase II basket trial: T-DXd + durvalumab (2L)
 - NCT04042701: T-DXd + pembrolizumab
 - NCT04144569: Pyrotinib + PD-1 inhibitors
 - Zenocutuzumab (MCLA-128): bi-specific antibody
 - NCT03602079, NCT03255070, NCT04818333, NCT05141786: several other HER2 ADCs

OUTLINE

- HER2 BIOLOGY
- HER2 ALTERATIONS IN NSCLC
- CLINICAL AND BIOLOGIC CHARACTERISTICS HER2-MUTANT NSCLC
- TIMELINE OF DEVELOPMENT OF HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- MECHANISM OF ACTION FOR HER2 TARGETED THERAPIES IN HER2-MUTANT NSCLC
- HER2 THERAPY
 - CHEMOTHERAPY
 - IMMUNOTHERAPY
 - HER2 TARGETED TYROSINE KINASE INHIBITORS (TKIs)
 - HER2 TARGETED MONOCLONAL ANTIBODIES (mAb)
 - HER2 TARGETED ANTIBODY-DRUG CONJUGATES (ADCs)
- MECHANISM OF RESISTANCE
- FUTURE PERSPECTIVES
- CONCLUSION

CONCLUSIONS

- HER2 alterations, including mutations, protein overexpression and gene amplification, represent three distinct molecular entities
- *HER2* mutations, are a confirmed therapeutic target in NSCLC
- Identifying *HER2* mutations is very important for NSCLC patients to benefit from these new therapies
- Platinum based chemotherapy currently remains the preferred first line treatment for patients with *HER2*-mutant NSCLC
- Trastuzumab-deruxtecan remains the new line treatment for patients with previously treated
- The management of ILD requires a specific evaluation and expertise
- For *HER2*-mutant disease, the role of selective or irreversible TKIs, showed a modest activity and relevant rate of toxicities, due to the inhibition of EGFR pathway
- Novel HER2-selective TKIs (without activity against other HER/ERBB family members) may lead to enhanced activity and improved safety

Fundación Gecp lung cancer research

#15CongressGECP

Muchas Gracias